Recommender Systems Evaluation: A 3D Benchmark

نویسندگان

  • Alan Said
  • Domonkos Tikk
  • Klara Stumpf
  • Yue Shi
  • Martha Larson
  • Paolo Cremonesi
چکیده

Recommender systems add value to vast content resources by matching users with items of interest. In recent years, immense progress has been made in recommendation techniques. The evaluation of these has however not been matched and is threatening to impede the further development of recommender systems. In this paper we propose an approach that addresses this impasse by formulating a novel evaluation concept adopting aspects from recommender systems research and industry. Our model can express the quality of a recommender algorithm from three perspectives, the end consumer (user), the service provider and the vendor (business and technique for both). We review current benchmarking activities and point out their shortcomings, which are addressed by our model. We also explain how our 3D benchmarking framework would apply to a specific use case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of recommender systems: A multi-criteria decision making approach

The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Ensemble-based Top-k Recommender System Considering Incomplete Data

Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...

متن کامل

Benchmarking Adaptive Retrieval and Recommender Systems

In recent years, immense progress has been made in the development of recommendation, retrieval, and personalisation techniques. The evaluation of these systems is still based on traditional information retrieval and statistics metrics, e.g., precision, recall and/or RMSE, often not taking the use-case and situation of the actual system into consideration. However, the rapid evolution of recomm...

متن کامل

A New WordNet Enriched Content-Collaborative Recommender System

The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012